当前位置: 昆山隆诚翔电子有限公司 » 晶闸管专题

双向可控硅的设计及应用的探讨

分类:晶闸管专题 发布:2017年06月19日 22:35 浏览:2530次 Tag:

  引言

  1958年,从美国通用电气公司研制成功第一个工业用可控硅开始,电能的变换和控制从旋转的变流机组、静止的离子变流器进入以电力半导体" target="_blank">半导体器件组成的变流器时代。可控硅分单向可控硅与双向可控硅。单向可控硅一般用于彩电的过流、过压保护电路。双向可控硅一般用于交流调节电路,如调光台灯及全自动洗衣机中的交流电源控制。

  双向可控硅是在普通可控硅的基础上发展而成的,它不仅能代替两只反极性并联的可控硅,而且仅需一个触发电路,是目前比较理想的交流开关器件,一直为家电行业中主要的功率控制器件。近几年,随着半导体技术的发展,大功率双向可控硅不断涌现,并广泛应用在变流、变频领域,可控硅应用技术日益成熟。本文主要探讨广泛应用于家电行业的双向可控硅的设计及应用。

  双向可控硅特点

  双向可控硅可被认为是一对反并联连接的普通可控硅的集成,工作原理与普通单向可控硅相同。图1为双向可控硅的基本结构及其等效电路,它有两个主电极T1和T2,一个门极G,门极使器件在主电极的正反两个方向均可触发导通,所以双向可控硅在第1和第3象限有对称的伏安特性。双向可控硅门极加正、负触发脉冲都能使管子触发导通,因此有四种触发方式。

  

  图1 双向可控硅结构及等效电路

  双向可控硅应用

  为正常使用双向可控硅,需定量掌握其主要参数,对双向可控硅进行适当选用并采取相应措施以达到各参数的要求。

  耐压级别的选择:通常把VDRM(断态重复峰值电压)和VRRM(反向重复峰值电压)中较小的值标作该器件的额定电压。选用时,额定电压应为正常工作峰值电压的2~3倍,作为允许的操作过电压裕量。

  电流的确定:由于双向可控硅通常用在交流电路中,因此不用平均值而用有效值来表示它的额定电流值。由于可控硅的过载能力比一般电磁器件小,因而一般家电中选用可控硅的电流值为实际工作电流值的2~3倍。同时,可控硅承受断态重复峰值电压VDRM和反向重复峰值电压VRRM时的峰值电流应小于器件规定的IDRM和IRRM。

  通态(峰值)电压VTM的选择:它是可控硅通以规定倍数额定电流时的瞬态峰值压降。为减少可控硅的热损耗,应尽可能选择VTM小的可控硅。

  维持电流:IH是维持可控硅维持通态所必需的最小主电流,它与结温有关,结温越高,则IH越小。

  电压上升率的抵制:dv/dt指的是在关断状态下电压的上升斜率,这是防止误触发的一个关键参数。此值超限将可能导致可控硅出现误导通的现象。由于可控硅的制造工艺决定了A2与G之间会存在寄生电容,如图2所示。我们知道dv/dt的变化在电容的两端会出现等效电流,这个电流就会成为Ig,也就是出现了触发电流,导致误触发。

  

  图2 双向可控硅等效示意图

  切换电压上升率dVCOM/dt。驱动高电抗性的负载时,负载电压和电流的波形间通常发生实质性的相位移动。当负载电流过零时双向可控硅发生切换,由于相位差电压并不为零。这时双向可控硅须立即阻断该电压。产生的切换电压上升率(dVCOM/dt)若超过允许值,会迫使双向可控硅回复导通状态,因为载流子没有充分的时间自结上撤出,如图3所示。

  

  图3 切换时的电流及电压变化

  高dVCOM/dt承受能力受二个条件影响:

  dICOM/dt—切换时负载电流下降率。dICOM/dt高,则dVCOM/dt承受能力下降。

  结面温度Tj越高,dVCOM/dt承受能力越下降。假如双向可控硅的dVCOM/dt的允许值有可能被超过,为避免发生假触发,可在T1 和T2 间装置RC缓冲电路,以此限制电压上升率。通常选用47~100Ω的能承受浪涌电流的碳膜电阻,0.01μF~0.47μF的电容,晶闸管关断过程中主电流过零反向后迅速由反向峰值恢复至零电流,此过程可在元件两端产生达正常工作峰值电压5-6倍的尖峰电压。一般建议在尽可能靠近元件本身的地方接上阻容吸收回路。

  断开状态下电压变化率dvD/dt。若截止的双向可控硅上(或门极灵敏的闸流管)作用很高的电压变化率,尽管不超过VDRM,电容性内部电流能产生足够大的门极电流,并触发器件导通。门极灵敏度随温度而升高。假如发生这样的问题,T1 和T2 间(或阳极和阴极间)应该加上RC 缓冲电路,以限制dvD/dt。

  电流上升率的抑制:电流上升率的影响主要表现在以下两个方面:

  ①dIT/dt(导通时的电流上升率)—当双向可控硅或闸流管在门极电流触发下导通,门极临近处立即导通,然后迅速扩展至整个有效面积。这迟后的时间有一个极限,即负载电流上升率的许可值。过高的dIT/dt可能导致局部烧毁,并使T1-T2 短路。假如过程中限制dIT/dt到一较低的值,双向可控硅可能可以幸存。因此,假如双向可控硅的VDRM在严重的、异常的电源瞬间过程中有可能被超出或导通时的dIT/dt有可能被超出,可在负载上串联一个几μH的不饱和(空心)电感。

  ②dICOM/dt (切换电流变化率) —导致高dICOM/dt值的因素是:高负载电流、高电网频率(假设正弦波电流)或者非正弦波负载电流,它们引起的切换电流变化率超出最大的允许值,使双向可控硅甚至不能支持50Hz 波形由零上升时不大的dV/dt,加入一几mH的电感和负载串联,可以限制dICOM/dt。

  为了解决高dv/dt及di/dt引起的问题,还可以使用Hi-Com 双向可控硅,它和传统的双向可控硅的内部结构有差别。差别之一是内部的二个“闸流管”分隔得更好,减少了互相的影响。这带来下列好处:

  ①高dVCOM/dt。能控制电抗性负载,在很多场合下不需要缓冲电路,保证无故障切换。这降低了元器件数量、底板尺寸和成本,还免去了缓冲电路的功率耗散。

  ②高dICOM/dt。切换高频电流或非正弦波电流的性能大为改善,而不需要在负载上串联电感,以限制dICOM/dt。

  ③高dvD/dt(断开状态下电压变化率)。双向可控硅在高温下更为灵敏。高温下,处于截止状态时,容易因高dV/dt下的假触发而导通。Hi-Com双向可控硅减少了这种倾向。从而可以用在高温电器,控制电阻性负载,例如厨房和取暖电器,而传统的双向可控硅则不能用。

相关文章
 
资讯栏目
最新资讯
资讯排行
 

收缩
  • 电话咨询

  • 0512-82613006